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TOPOLOGICAL CHARACTERIZATIONS OF S-LINEARITY

DAVID CARFÌ

(Nota presentata dal Socio Emerito Maria Teresa Calapso)

ABSTRACT. We give several characterizations of basic concepts of S-linear algebra in
terms of weak duality on topological vector spaces. On the way, some classic results
of Functional Analysis are reinterpreted in terms of S-linear algebra, by an application-
oriented fashion. The results are required in the S-linear algebra formulation of infinite
dimensional Decision Theory and in the study of abstract evolution equations in economi-
cal and physical Theories.

1. Intoduction

The paper contains several and various results. In section 4 we show some relations
among the S-linear hull and the β(S ′n,Sn) closed linear hull of an S-family, Sspan is
characterized. In section 5 the fundamental concept of S-linear independence is character-
ized; S-linear independence is the main tool to prove the uniqueness of solution of abstract
Cauchy problems of evolution. In section 6, S-bases are characterized. In section 7 and 8,
S-linear operators are introduced and characterized: they are the core of the infinite dimen-
sional formulation of Decisions Theory and, moreover, of the linear evolution of infinite
dimensional economical and physical systems. In section 9, the new concept of S-closed
set are introduced and studied.

2. Preliminaries and notations on tempered distributions

In this paper we shall use some notations. The letters n,m, k are natural numbers,
N (≤ k) is the set of positive integer lower than or equal to k; µn is the Lebesgue measure
on Rn; I(R,C) is the immersion of R in C; if X is a non-empty set, IX is the identity
map on X . If X and Y are two topological vector spaces on K, Hom(X,Y) is the set of
all the linear operators from X to Y , L(X,Y ) is the set of all the linear and continuous
operators fromX to Y , X∗ := Hom (X,K) is the algebraic dual of X andX ′ = L (X,K)
is the topological dual of X . Sn := S(Rn,K) is the (n,K)-Schwartz space, that is to
say, the set of all the smooth functions (i.e., of class C∞) of Rn in K rapidly decreasing at
infinity with all their derivatives (the functions and all its derivatives tend to 0 at∓∞ faster
than the reciprocal of any polynomial); S(n) is the standard Schwartz topology on Sn, and
(Sn) is the topological vector space on Sn with its standard topology; the topology S(n)

is generated by a metric, in fact (Sn is closed under differentiation and multiplication by
1
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polynomials) by the family of seminorms (pk) on Sn defined by

pk (f) = sup
x∈Rn

max
α,β∈Nn

0

{∣∣xβDαf(x)
∣∣ : 0 ≤ |α| , |β| ≤ k

}
,

for every non-negative integer k; each pk is a norm on Sn, and pk (f) ≤ pk+1 (f) for all
f ∈ Sn, the pair

(
Sn, (pk)k∈N0

)
is a countably complete normed space and consequentely

(Sn) is a Frèchet space (see also [Ho] and [Ba]); S ′n := S ′(Rn,K) is the space of tempered
distributions from Rn to K, that is, the topological dual of the topological vector space
(Sn,S(n)), i.e., S ′n=(Sn,S(n))′; if x ∈ Rn, δx is the distribution of Dirac on Sn centered
at x, i.e., the functional δx : Sn → K : φ 7→ φ (x) ; if f ∈ OM (Rn,K), where

OM (Rn,K) = {g ∈ C∞(Rn,K) : ∀φ ∈ Sn(K), φg ∈ Sn(K)} ,

then the functional

[f ] = [f ]n : Sn → K : φ 7→
∫

Rn

fφdµn

is a tempered distribution, called the regular distribution generated by f (see [1] page 110,
[2], [3], [4]).

Let a, b ∈ R 6= = R\{0}, S(a,b) is the (a, b) -Fourier-Schwartz transformation, i.e., the
operator S(a,b) : Sn →Sn, defined, for all f ∈ Sn and ξ ∈ Rn, by

S(a,b)(f)(ξ) =
(

1
a

)n ∫
Rn

fe−ib(·|ξ)dµn =
[(

1
a

)n
e−ib(·|ξ)

]
(f),

where (· | ·) is the standard scalar product on Rn. Moreover, we recall that S(a,b) is a
homeomorphism with respect to the standard topology S(n) and, concerning its inverse,
for every x ∈ Rn and g ∈ Sn,one has

S−(a,b)(g)(x) =
(
|b| a
2π

)n ∫
Rn

geib(x|·)dµn = S(2π/(|b|a),−b)(g)(x).

Let a, b ∈ R 6= = R\{0}, F(a,b) denotes the (a, b)-Fourier transformation on the space
of tempered distributions, i.e., the operator F(a,b) : S ′n→S ′n, defined, for all u ∈ S ′n and
for every φ ∈ Sn, by

F(a,b)(u)(φ) = u
(
S(a,b)(φ)

)
,

in other terms it is the transpose of S(a,b):

F(a,b) = t
(
S(a,b)

)
.

Moreover, we recall that F(a,b) is a homeomorphism in the weak* topology σ (S ′n,Sn)
(even more it is a topological isomorphism). Moreover, one has

F−(a,b) =(2π/(|b|a),−b) F .

Two properties that we shall use are the following ones: for all α ∈ Nn0 ,

F(a,b)(u(α)) = (bi)α (IRn)α F(a,b)(u);

and

F(a,b)((IRn)α u) =
(
i

b

)α (
F(a,b)(u)

)(α)
,
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where, IRn is (as we said) the identity operator on Rn, and where (IRn)α is the α-th power
of the identity in multi-indexed notation.

3. Preliminaries and notations on S-linear algebra

Let I be a non-empty set. We denote by s (I,S ′n) the space of all the families in S ′n
indexed by I , i.e., the set of all the surjective maps from I onto a subset of S ′n. Moreover,
as usual, if v is one of these families, for each p ∈ I , the distribution v(p) is denoted by
vp, and the family v itself is also denoted by (vp)p∈I . The set s (I,S ′n) is a vector space

with respect to the standard operations of addition + : s (I,S ′n)2 → s (I,S ′n) defined by
v+w := (vp + wp)p∈I , and multiplication by scalars · : K×s (I,S ′n)→ s (I,S ′n) defined
by λv := (λvp)p∈I . In other words, the family v + w is defined by (v + w)p = vp + wp,
for every p in I , and the family λv is defined by (λv)p = λvp, for every p in I . In the
theory of superpositions on S ′n the class of the S-families plays a basic role.

Let v be a family in S ′n indexed by Rm. The family v is called family of class S or
S-family if, for each φ ∈ Sn, the function v(φ) : Rm → K, defined by v(φ)(p) := vp(φ),
for each p ∈ Rm, belongs to the space Sm. We denote the set of all these families by
S(Rm,S ′n). Let v ∈ S(Rm,S ′n) be a family of class S. We call operator generated by the
family v (or associated with v) the operator v̂ : Sn → Sm : φ 7→ v(φ).

In the following we shall denote by L(Sn,Sm) the set of all the linear and continuous
operators among the two topological vector spaces (Sn) and (Sm). Moreover, consider
a linear operator A : Sn → Sm, we say that A is transposable if its algebraic adjoint
∗A : S∗m → S∗n (X∗ denote the algebraic adjoint of X), defined by ∗A(a) = a ◦ A, maps
S ′m into S ′n.

Let v ∈ S (Rm,S ′n) be a family of tempered distributions. Then, the following asser-
tions hold and are equivalent:

i) for every a ∈ S ′m the composition u = a ◦ v̂, i.e., the functional

u : Sn → K : φ 7→ a (v̂(φ)) ,

is a tempered distribution;
ii) v̂ is transposable;
iii) v̂ is (σ(Sn,S ′n), σ(Sm,S ′m))-continuous from Sn to Sm;
iv) v̂ is strongly-continuous from (Sn) to (Sm).

The two vector spaces S (Rm,S ′n) and L(Sn,Sm) are isomorphic, being the map

(·)∧ : S (Rm,S ′n)→ L (Sn,Sm) : v 7→ v̂

an isomorphism, moreover, its inverse is the map

(·)∨ : L (Sn,Sm)→ S (Rm,S ′n) : A 7→ A∨ := (δx ◦A)x∈Rm .

Let v ∈ S (Rm,S ′n) and a ∈ S ′m. The distribution a ◦ v̂ = t(v̂)(a) is called the
S-linear superposition of v with respect to (the system of coefficients) a and we denote it
by ∫

Rm

av.
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Moreover, if u ∈ S ′n and there exists an a ∈ S ′m such that

u =
∫

Rm

av,

u is said an S-linear superposition of v.

As a particular case, we can consider the linear superposition of v with respect to the
regular distribution generated by the K -constant functional on Rm of value 1, the distri-
bution

[
1(Rm,K)

]
, we denote it simply by

∫
Rm v, and then∫

Rm

v :=
∫

Rm

[
1(Rm,K)

]
v.

An alternative definition of superposition can be obtained defining the superposition of a
family of numbers (real or complex) with respect to a distributional system of coefficients.

We say that a family of real or complex number x = (xi)i∈Rm is a family of class S if
the function fx : Rm → K, defined by fx(i) = xi, for each i in Rm, is a function of class
S. We call fx the test function associated with the family x.

In this conditions, we put ∫
Rm

a x := a(fx),

for every tempered distribution a ∈ S ′m , and we call the number
∫

Rm ax superposition of
the family x with respect to a.

Introducing a notation, the relation between the two kind of superpositions is very nat-
ural.

Notation. Let 〈·, ·〉 be the canonical bilinear form on S ′n × Sn and let v be an S-family
of tempered distributions in S ′n indexed by Rm. For every test function φ ∈ Sn by the
symbol 〈v, φ〉 we denote the family of numbers defined by

〈v, φ〉i := 〈vi, φ〉 ,
for every i in Rm.

Let v be an S-family of tempered distributions in S ′n indexed by Rm, let a be a tempered
distribution in S ′m and let 〈·, ·〉 be the canonical bilinear form on S ′n×Sn. Then, for every
φ ∈ Sn, we have 〈∫

Rm

av, φ

〉
=
∫

Rm

a 〈v, φ〉 .

We shall see that the preceding result can be restated saying that the canonical bilinear
form on S ′n × Sn is S-linear in the first argument.

The operators∫
Rm

(·, ·) : S ′m × S (Rm,S ′n)→ S ′n : (a, v) 7→
∫

Rm

av,

and ∫
Rm

(·, v) : S ′m → S ′n : a 7→
∫

Rm

av,
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are called the superposition operator in S ′n with coefficients-systems in S ′m and the super-
position operator associated to v.

4. S-linear hull

Definition 4.1 (of S-linear hull). Let v ∈ S (Rm,S ′n). The S-linear hull of v is the set

Sspan (v) := tv̂ (S ′m) =
{
u ∈ S ′n : ∃a ∈ S ′m : u =

∫
Rm

av

}
. �

Example 4.2 (on the Dirac and Fourier families). Let δ be the Dirac family, then
Sspan (δ) = S ′n. In fact, for all u ∈ S ′n, one has

u = u ◦ ISn = u ◦ δ̂ =
∫

Rn

uδ.

Let ϕ =
([

(1/a)ne−ib(p|·)
])

be the Fourier family, we have Sspan (ϕ) = S ′n, as follows
from the Fourier expansion theorem. 4

Definition 4.2 (system of S-generators). Let v ∈ S (Rm,S ′n). The family v is called
system of S-generators for a set V ⊆ S ′n if and only if Sspan(v) = V. �

Example 4.2. The Dirac family and the Fourier families are systems of S-generators
for S ′(Rn,C). 4

Theorem 4.1 (on the structure of Sspan). Let u ∈ S (Rm,S ′n) . Then, Sspan (u) is a
subspace of S ′n, it contains all the elements of u and consequently

span (u) ⊆ S span (u) .

Proof. Let λ ∈ K and v, w ∈ S span (u), then, there exist a, b ∈ S ′m such that

v =
∫

Rm

au, w =
∫

Rm

bu.

Now, one has

λv + w = λ

∫
Rm

au+
∫

Rm

bu =
∫

Rm

(λa+ b)u,

and then λv + w ∈ Sspan (u). Moreover, let δ be the Dirac basis of S ′m, we have∫
Rm

δpu = up

and then up ∈ Sspan (u). �

Let us see the relation among the S-linear hull of an S-family and its β(S ′n,Sn)-closed
linear hull. Note that, since Sn is reflexive, it is semireflexive and then the linear subspaces
of S ′n are β(S ′n,Sn)-closed if and only if they are σ(S ′n,Sn)-closed, so the β(S ′n,Sn)-
closed linear hull of a subset coincides with the σ(S ′n,Sn)-closed hull of the same set.

Theorem 4.2. Let v ∈ S (Rm,S ′n) be a system of S -generators for S ′n. Then,

spanβ(S′
n,Sn) (v) = S ′n.
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Proof. To prove that v is β(S ′n,Sn)-dense in S ′n, we shall prove that every linear
β(S ′n,Sn)-continuous form on S ′n, that is zero on the family v, is zero on the whole S ′n.
In fact, let f be such a form, since S ′n is reflexive there is a test function g in Sn such that
f(u) = u(g), for every distribution u in S ′n. Since f is zero on v, we have

0 = f(vi) = vi(g) = v(g)(i) = v̂(g)(i),

and hence v̂(g) is the origin of Sm. Now, v S-generates S ′n if and only if tv̂ is surjective
and thus, by the Schwartz-Dieudonné theorem on Frechét spaces (see [5], theorem 7, pg.
92), the operator v̂ is injective, so g is the origin of Sn, and then f is the origin of S ′′n . �

This result can be generalized.

Theorem 4.3. Let v ∈ S (Rm,S ′n) be an S-family in S ′n. Then,
Sspan (v) ⊆ spanβ(S′

n,Sn) (v) = spanσ(S′
n,Sn) (v) .

Proof. We shall prove that every superposition of v is the β(S ′n,Sn)-limit of a sequence
of finite linear combinations of the family v. Let a be in Sm, then a is the β(S ′m,Sm)-limit
of a sequence d of finite combinations of the Dirac family of S ′m, since the Dirac family is
β(S ′m,Sm)-dense in S ′m. We have∫

Rm

av =
∫

Rm

(
β(S′

m,Sm) lim
k→∞

dk

)
v = β(S′

n,Sn) lim
k→∞

∫
Rm

dkv,

by the (β(S ′m,Sm), β(S ′n,Sn))-continuity of tv̂. Moreover, by the selection property of
the Dirac’s distributions, the superposition

∫
Rm dnv is a finite combination of the family v,

and this concludes the proof. �

The following theorem shows when Sspan (v) is σ(S ′n,Sn)-closed.

Theorem 4.4. Let v ∈ S (Rm,S ′n) be an S-family in S ′n. Then, the following conditions
are equivalent:

1) Sspan (v) is σ(S ′n,Sn)-closed in S ′n, i.e., β(S ′n,Sn)-closed;
2) Sspan (v) = spanσ(S′

n,Sn) (v);
3)
∫

Rm(·, v) is a topological homomorphism for σ(S ′m,Sm) and σ(S ′n,Sn);
4) v̂ (Sn) is closed in the space (Sm);
5) v̂ is a topological homomorphism for the pair of topologies (σ(Sn,S ′n), σ(Sm,S ′m));
6) v̂ is a topological homomorphism from (Sn) to (Sm).

Proof. It is the Dieudonné-Schwartz theorem (see [5] , theorem 7, pg. 92) reread in
our context ((Sn) and (Sm) are two Frèchet spaces), taking into account the preceding
theorem. �

Remark. If Sspan (v) is σ(S ′n,Sn)-closed, then
∫

Rm(·, v) is a topological homomor-
phism for β(S ′m,Sm) and β(S ′n,Sn) (by proposition 18, page 309, of [Ho]).

Theorem 4.5. Let v ∈ S (Rm,S ′n). Then the following assertions are equivalent
1) v is a system of S-generators for S ′n;
2)
∫

Rm(·, v) is a surjective topological homomorphism for σ(S ′m,Sm) and σ(S ′n,Sn);
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3)
∫

Rm(·, v) is a surjective topological homomorphism for β(S ′m,Sm) and β(S ′n,Sn);
4) v̂ is an injective topological homomorphism for σ(Sn,S ′n) and σ(Sm,S ′m);
5) v̂ is an injective topological homomorphism from (Sn) to (Sm).

Now we see an infinite-dimensional version of a basic theorem of linear algebra, more
precisely the following classic result:

Theorem. Let v = (vi)ni=1 be a family of linear forms on a vector space X and let w
be a linear form vanishing on the kernel of every form vi. Then w is a linear combination
of the family v.

Note, first of all, that the theorem can be restated as follows.

We say kernel of a family v = (vi)i∈I of linear forms on a vector space X the intersec-
tion of all the kernels of the forms forming v:

ker v :=
⋂
i∈I

ker vi.

Moreover, if Y is a subspace of X , by Y ⊥ we denote the orthogonal of Y , i.e., the set
of all the linear forms on X which vanish on every vector of Y .

With this notation we can restate the preceding theorem.

Theorem. Let v = (vi)ni=1 be a family of linear forms on a vector space X and let w
be another linear form. Then, w vanishes on the kernel of the family v if and only if w is a
linear combination of the family v, in other words

(ker v)⊥ = span(v).

Finally, we state and prove the S-linear version of the above result.

Theorem 4.6. Let v = (vp)p∈Rm be an S-family in S ′n. Then

(ker v)⊥ = spanσ(S′
n,Sn) (v) .

In particular, if v is exhaustive (i.e., if Sspan (v) is σ(S ′n,Sn)-closed) we have

(ker v)⊥ = Sspan (v) .

Proof. A classic theorem on duality (see [5] theorem 11, pg. 119) affirms that

(kerA)⊥ = (Im (tA))σ(E′,E),

for every weakly continuous operator A : E → F . Now applying this theorem to the
operator v̂ we have

(ker v̂)⊥ = (Im (tv̂))σ(S′
n, Sn) = (Sspan (v))σ(S′

n,Sn) = spanσ(S′
n,Sn) (v) .

On the other hand, φ belongs to ker v̂ if and only if v(φ)(p) = 0, for every m-tuple p, and
this means that φ belongs to the kernel of each vp, concluding ker v̂ = ker v. �
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5. S-linear independence

Definition 5.1 (of S-linear independence). Let v ∈ S(Rm,S ′n) . The family v is said
S-linearly independent, if a ∈ S ′m and

∫
Rm av = 0S′

n
implies a = 0S′

m
. �

Example 5.1. The Dirac family in S ′n is S-linearly independent. In fact, one has∫
Rn

uδ = u,

for all u ∈ S ′n, and then
∫

Rn uδ = 0S′
n

implies u = 0S′
n
. 4

Example 5.2 (the Fourier families). The Fourier families are S-linearly independent.
In fact, let ϕ be the (a, b)-Fourier family, and let

∫
Rn uϕ = 0S′

n(C). For every φ ∈ Sn(C),
one has

0 =
(∫

Rn

uϕ

)
(φ) = u (ϕ̂ (φ)) = u

(
S(a,b) (φ)

)
= F(a,b) (u) (φ) ,

i.e., F(a,b) (u) = 0S′
n(C), and thus u = 0S′

n(C), being F(a,b) injective. 4

Theorem 5.1. Let v ∈ S (Rm,S ′n) be a family S -linearly independent. Then, v is
linearly independent. Consequently, Sspan (v) is an infinite-dimensional subspace of S ′n.

Proof. Let k ∈ N, α ∈ (Rm)k , and vα = (vαi
)ki=1 . By contradiction, let vα be a

linearly dependent system of S ′n, then there exists a non-zero k-tuple λ ∈ Ck such that
k∑
i=1

λivαi = 0S′
n
.

Put Λ =
∑k
i=1 λiδαi

, we have∫
Rm

Λv =
∫

Rm

k∑
i=1

λiδαi
v =

k∑
i=1

λi

∫
Rm

δαi
v =

k∑
i=1

λivαi
= 0S′

n
.

Now, since Λ 6= 0S′
m
, the preceding equality contradicts the S-linear independence of v,

against the assumptions. �

Remark. The above theorem shows that, for the S -families, the S-linear independence
implies the usual linear independence. Actually, the S-linear independence is more re-
strictive than the linear independence, as we shall see later by a simple example. On the
contrary it is less restrictive than the β(S ′n,Sn)-topological independence, as it is shown
below.

We recall that a system v = (vi)i∈I is β(S ′n,Sn)-topologically free (resp. σ( S ′n,Sn)-
topologically free) if and only if there exists a family (fi)i∈I of β(S ′n,Sn)-continuous
(resp. σ(S ′n,Sn)-continuous) linear forms on S ′n such that fi(vk) = δik, where (δik)(i,k)∈I2
is the Kronecker delta on I× I . If v is not topologically free it is said topologically bound.

Theorem 5.2. Every S-family is β(S ′n,Sn)-topologically bound and, thus, σ(S ′n,Sn)
-topologically bound.
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Proof. Let v be an S-family in S ′n indexed by Rm. And let f be an arbitrary family in
S ′′n indexed by the same index set. Being the space (Sn) reflexive, for every i, there is a gi

in Sn such that fi(u) = u(g), for every u in S ′n. If there is an index i such that fi(vi) = 1,
then we have

1 = fi(vi) = vi(gi) = v(gi) (i) ,

being v an S-family, the function v(gi) is continuous, then there is a neighborhood U of i
in which the function v(gi) is strictly positive. Then, for every k in U , we have

fi(vk) = vk(gi) = v(gi) (k) > 0,

and then f cannot verify the condition of topological independence for v. �

With the same proof, it is possible to prove that everyC0-family is strongly topologically
bound. Consequently every smooth family is also strongly topologically bound.

It’s simple to prove that a family v in S ′n indexed by Rm is S-linearly dependent if and
only if, for every y in Rm, there is a tempered distribution a different from δy such that
vp =

∫
Rm av.

By the Dieudonné-Schwartz theorem (see [5], theorem 7, pg. 92) we immediately de-
duce two characterizations.

Theorem 5.3. Let v ∈ S (Rm,S ′n) such that Sspan (v) is σ(S ′n,Sn)-closed. Then the
following assertions are equivalent

1) v is S-linearly independent;
2)
∫

Rm(·, v) is an injective topological homomorphism for σ(S ′m,Sm) and σ(S ′n,Sn);
3)
∫

Rm(·, v) is an injective topological homomorphism for β(S ′m,Sm) and β(S ′n,Sn);
4) v̂ is a surjective topological homomorphism for σ(Sn,S ′n) and σ(Sm,S ′m);
5) v̂ is an surjective topological homomorphism from (Sn) to (Sm).

Theorem 5.4. Let v ∈ S (Rm,S ′n). Then the following assertions are equivalent
1) v is S-linearly independent and Sspan (v) is σ(S ′n,Sn)-closed;
2)
∫

Rm(·, v) is an injective topological homomorphism for σ(S ′m,Sm) and σ(S ′n,Sn);
3) v̂ is a surjective topological homomorphism for σ(Sn,S ′n) and σ(Sm,S ′m);
4) v̂ is an surjective topological homomorphism from (Sn) to (Sm).

Remark. If v is S-linearly independent, we can consider the algebraic isomorphism
from S ′m to Sspan (v) that sends every a ∈ S ′m to the superposition

∫
Rm av, that is the

restriction of the injection
∫

Rm(·, v) to the pair of sets (S ′m,S span (v)). We shall denote
the inverse of this isomorphism by [· | v], it is a consequence of the preceding theorem that
this inverse operator is a topological isomorphism, with respect to the topology induced by
σ(S ′n,Sn) on Sspan (v) and to σ(Sm,S ′m), in and only if Sspan (v) is σ(S ′n,Sn)-closed.
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6. S-bases

Definition 6.1 (of S-basis). Let v ∈ S(Rm,S ′n) and let V ⊆ S ′n. v is an S-basis of V
if it is S-linearly independent, and Sspan(v) = V. �

The Dirac family δ in S ′n is an S-basis of S ′n. We call δ the canonical S-basis of S ′n or
the Dirac basis of S ′n.

Moreover, the following complete version of the Fourier expansion-theorem, allow us
to call the Fourier families of S ′(Rn,C) with the name Fourier bases of S ′(Rn,C).

Theorem 6.1 (Fourier expansion theorem in geometric form). The Fourier families
in S ′(Rn,C) are S-bases of S ′(Rn,C).

The following is a meaningful generalization of the Fourier expansion theorem.

Theorem 6.2 (characterization of an S-basis). Let v ∈ S (Rm,S ′n). Then,
i) v is S-generates S ′n if and only if t (v̂) is surjective.
ii) v is S-linearly independent if and only if t (v̂) is injective.
iii) v is an S-basis of S ′n if and only if t (v̂) is bijective.
Proof. First of all t (v̂) is well defined because v is an S-family. Moreover, it is obvious

that v S-generates S ′n if and only if t (v̂) is surjective, and that v is S -linearly independent
if and only if t (v̂) is injective. �

Example 6.1 (a system of linearly independent S -generators that is not an S-
basis). Let v = (δ′x)x∈R be the family in S ′1 of the first derivatives of the Dirac distribu-
tions. The family v is of class S, in fact

v(φ)(x) = vx(φ) = δ′x(φ) = −φ′(x),

and −φ′ is an S-function. Consequently, the operator associated with v is the derivation in
Sn up to the sign and, then, t (v̂) is the derivation in S ′n. This last operator is a surjective
operator (every tempered distribution has a primitive) but it is not injective (every tempered
distribution has many primitives), then v is a system of S-generators for S ′1, but it is not
S-linearly independent. Moreover, note that v is linearly independent. In fact, let P be a
finite subset of the real line R, and let, for every p0 in P , fp0 be a function in the space
S1 whose derivative verifies the relation f ′p0(p) = δp0p, for every index p in P (here δp0p
is the Kronecker symbol on the index-set P calculate in the pair (p0, p), not the Dirac
distribution). If a = (ap)p∈P is a finite family of scalars such that

∑
p∈P apvp = 0S′

1
, then

0 =

∑
p∈P

apvp

 (fp0) =
∑
p∈P

apδp0p = ap0 ,

for every p0 in P .

By the Dieudonné-Schwartz theorem (see [5], theorem 7, pg. 92) we immediately have
a characterization.

Theorem 6.3. Let v ∈ S (Rm,S ′n). Then the following assertions are equivalent
1) v is an S-basis of S ′n;
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2)
∫

Rm(·, v) is topological isomorphism for σ(S ′m,Sm) and σ(S ′n,Sn);
3)
∫

Rm(·, v) is a topological isomorphism for β(S ′m,Sm) and β(S ′n,Sn);
4) v̂ is a topological isomorphism for σ(Sn,S ′n) and σ(Sm,S ′m);
5) v̂ is a topological isomorphism from ( Sn) to (Sm).

7. S-operators and the definition of S-linear operators

Definition 7.1 (image of a family of distributions). Let W ⊆ S ′n, A : W → S ′m be an
operator and v = (vp)p∈ Rk be a family of tempered distributions in W , i.e., such that the
set {vp}p∈Rk is contained in W . The image of v under A is by definition the family in
S ′m

A(v) = (A(vp))p∈Rk ,

i.e., the family such that, for all p ∈ Rk, one has A(v)p = A(vp). �

We can read the above definition saying that “the image of a family of vectors is the
family of the images of vectors”.

Definition 7.2 (operator of class S). Let W ⊆ S ′n and L : W → S ′m be an operator. L
is an S-operator or operator of class S if, for each natural k and for each v ∈ S(Rk,S ′n),
such that {vp}p∈Rk ⊆W , one has L(v) ∈ S(Rk,S ′m). �

We can read the above definition as follows: “L is of class S if the image of an S-family
is an S-family”.

Example 7.1 (the transpose). Let A : Sn → Sm be a (σ (Sn,S ′n) , σ (Sm,S ′m))-
continuous operator. A is transposable (i.e., for every a ∈ S ′m, a ◦ A is in S ′n) and its
transpose is

tA : S ′m → S ′n : a 7→ a ◦A.
Let v ∈ S

(
Rk,S ′n

)
, one has, by definition,

tA (v)p = tA (vp) ,

and hence one deduces
tA (v) (φ) (p) = tA (v)p (φ) = tA (vp) (φ) = vp (A (φ)) = v (A (φ)) (p),

so, taking into account that v is an S-family, one has tA (v) (φ) = v̂ (A (φ)) ∈ Sk. Con-
cluding one has tA (v) ∈ S

(
Rk,S ′n

)
, and thus the operator tA, sending S-family in

S-family, is an S-operator. 4

Application 7.1. Let L : S ′n → S ′n be a differential operator with constant coefficients
and v be an S-family in S ′n. Then L(v) is an S-family, in fact L is the transpose of a certain
differential opeator on Sn. For instance, the family (δx)x∈Rn is obviously an S-family, and

so the families of derivatives
(
δ
(i)
x

)
x∈Rn

are S -families for every multi-index i. ♠
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Definition 7.3 (S-linear operator). Let L : S ′n → S ′m be an S-operator. L is called
S-linear operator if, for each natural k, for each v ∈ S(Rk,S ′n) and for every a ∈ S ′k,
one has

L

(∫
Rk

av

)
=
∫

Rk

aL(v).

The set of all the S-linear operators from S ′n to S ′m is denoted by SHom(S ′n,S ′m). �

8. Characterization of the S-linear operators

Now, we can show the nature of the S-linear operators defined on S ′n.

Recall that if v ∈ s
(
Rk,S ′m

)
and w ∈ S (Rm,S ′n), the family in S ′n∫

Rm

vw :=
(∫

Rm

vpw

)
p∈Rk

,

is called the superposition of w with respect to v. We have already proved that, if v ∈
S
(
Rk,S ′m

)
then

∫
Rm vw ∈ S

(
Rk,S ′n

)
and(∫

Rm

vw

)∧
= v̂ ◦ ŵ.

In this case,
∫

Rm vw is also denoted by vw and it is called the S-product of v by w.

Lemma 8.1 (the image under a transpose operator). Let B ∈ L (Sn,Sm) and v ∈
S(Rk,S ′m). Then,

tB(v) =
∫

Rk

vB∨,

so in particular, tB is an S-operator.
Proof. For each p ∈ Rk, one has(∫

Rk

vB∨
)
p

=
∫

R
vpB

∨ = vp ◦ (B∨)∧ = vp ◦B = tB (vp) = tB(v)(p),

and hence ∫
Rk

vB∨ = tB(v). �

Theorem 8.1 (S-linearity of a transpose operator). Let B ∈ L(Sn,Sm) and v ∈
S(Rk,S ′m). Then, for each a ∈ S ′k one has

tB

(∫
Rk

av

)
=
∫

Rk

a tB(v).

Proof. One has

tB

(∫
Rk

av

)
=

(∫
Rk

av

)
◦B = (a ◦ v̂) ◦B = a ◦ (v̂ ◦B) =

=
∫

Rk

a(v̂ ◦B)∨ =
∫

Rk

a(
∫

Rk

vB∨) =
∫

Rk

a tB(v). �
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Application 8.1. As a simple application, we prove the formula: u′ =
∫

R uδ
′, where δ′

is the S-family in S ′1 defined by δ′ =
(
δ′p
)
p∈R. Let δ be the Dirac family of S ′1, then for

each u ∈ S ′1, one has u =
∫

R uδ, and thus

u′ = D

(∫
R
uδ

)
=
∫

R
uD(δ) =

∫
R
uδ′. ♠

Theorem 8.2 (characterization of S- linearity). Let L : S ′n → S ′m. Then, L is
S-linear if and only if there exists a B ∈ L (Sm, Sn) such that L = t (B).

Proof. Sufficiency. Follows from the above theorem.
Necessity. Let δ be the Dirac’s family in S ′n, one has

L (u) = L

(∫
Rn

uδ

)
=
∫

Rn

uL (δ) = t
(
L (δ)∧

)
(u) ,

so
L = t

(
L (δ)∧

)
.

Q. E. D. �

Recalling that a linear operator L : S ′n → S ′m is said to be transposable with respect
to the canonical bilinear form 〈·, ·〉 if and only if there exists a B ∈ L (Sm,Sn) such that
L = t (B), and recalling thatL is weakly continuous if and only if it is strongly continuous
and if and only if it is transposable, we derive the following definitive characterization.

Theorem 8.3 (characterization of S-linearity). Let L : S ′n → S ′m be a operator.
Then, the following assertions are equivalent

1) L is S-linear
2) there exists a B ∈ L (Sm,Sn) such that L = t (B);
3) L is linear and weakly continuous;
4) L is linear and strongly continuous;
5) L is linear and transposable.

9. S-closed subsets

A natural kind of stability arises with S-linear combinations.

Definition 9.1 (of S-closedness in S ′n). Let W be a subset of S ′n. W is called S- closed
or S-stable in S ′n if it contains all the superpositions of its S-families. In other words, W
is S-closed if, for each k ∈ N, for each v ∈ S (Rm,S ′n) in W and for each a ∈ S ′m,∫

Rm av ∈W . �

Example 9.1. The empty set and S ′n are S-closed. 4

Theorem 9.1. Let F be a family of S-closed subset of S ′n. Then
⋂
F is S-closed.
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Proof. Let F = (Fi)i∈I and let v be an S-family in
⋂
F . Then, v is an S-family in Fi

for every i ∈ I (in fact, v is a family in
⋂
F if vp ∈ Fi, for every p ∈ Rm and i ∈ I).

Since Fi is S-closed ∫
Rm

av ∈ Fi,

for every a ∈ S ′n and every i ∈ I , therefore
∫

Rm av ∈
⋂
F. �

Remark (on the union of two S-closed sets). The union of two S-closed sets is not
necessarily S -closed; neither in the case in which the two S-closed subsets are subspaces.
In fact, consider in S ′2 the S-linear hulls F1 = Sspan

(
δ(x,0)

)
and F2 = Sspan

(
δ(0,y)

)
,

and their union F = F1 ∪ F2. F is obviously not a subspace, but it is star-shaped in the
origin; in fact, if u is in F , then u lies in F1 or in F2, and then the segment joining u and
the origin is containing in F . Now, a star-shaped S-closed set is necessarily a subspace
(see later), then F cannot be S -closed.

Open problem. If two S-closed sets are disjoints, then is their union S-closed ? And,
if v is an S-family in the union of two disjoint S-closed sets, must v be contained in one
and only one of the two component sets ? The question arises naturally, since the image of
v is a path-connected subset of S ′n in the topology σ(S ′n,Sn).

Theorem 9.2. Let v be an S -family in S ′n and let F be the collection of all the S-closed
subsets of S ′n containing v. Then Sspan(v) ⊆

⋂
F . Consequently, Sspan(v) is S-closed

if and only if
Sspan(v) =

⋂
F.

Proof. Since Fi is S-closed and contains v, we have Sspan(v) ⊆ Fi, for every i ∈ I ,
and consequently Sspan(v) ⊆

⋂
F . If Sspan(v) is S-closed, since it contains v , we have

Sspan(v) ∈ F , and hence ⋂
F ⊆ Sspan(v). �

Remark. Note that, in the conditions of the preceding theorem, in general it is not
true that

⋂
F is a subspace, however, if Sspan(v) is S-closed then

⋂
F is necessarily a

subspace.

Theorem 9.3. Let F be a β(S ′n,Sn)-closed subspace of S ′n. Then F is S-closed.
Proof. Let δ be the Dirac family in S ′m and let v be an S-family in F , then∫

Rm

δpv = vp ∈ F.

Now, let a ∈ S ′m, since Sm is reflexive, we know that

spanβ(S′
m,Sm) (δ) = S ′m,

therefore there exists a sequence ∆ = (∆k)k∈N in span (δ) converging to a in the topology
β(S ′m,Sm).

We have, by the selection property of the Dirac family,∫
Rm

∆kv ∈ span (v) ⊆ F,
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the set-inclusion holding since F is a subspace of S ′n. Moreover, being the superposition-
operator

∫
Rm (·, v) continuous with respect to the topologies β(S ′m,Sm) and β(S ′n,Sn), it

follows that, for every a in S ′m,∫
Rm

av =
∫

Rm

(
β(S′

m,Sm) lim
k→+∞

∆k

)
v = β(S′

n,Sn) lim
k→+∞

∫
Rm

∆kv.

The last limit belongs to F for β(S ′n, Sn)-closedness. And consequently, F is S-closed.
�

Remark. Since Sn is semireflexiveF is a σ(S ′n,Sn)-closed if and only if it is β(S ′n,Sn)-
closed.

Definition 9.2 (of S-homomorphism). We say that an operator A : S ′m → S ′n is an
S-homomorphism if, for every positive integer k and for every family a = (ai)i∈Rk in S ′m,
the image of a under A, i.e., the family A(a) := (A(ai))i∈Rk , is an S-family if and only if
a is an S-family.

Definition 9.3 (of S-stable family). We say that an S-family v in S ′n indexed by Rm
is S-stable if, for every family a = (ai)i∈Rk in S ′m, the superposition

∫
Rm av (that is

necessarily a family in the S-linear hull of v and indexed by Rk) is an S -family if and
only if a is an S -family. In other terms v is S-stable if and only if the superposition
operator

∫
Rm(·, v) is an S-homomorphism.

Theorem 9.4. Let v be an S -stable family in S ′n. Then the Sspan(v) is S-closed.
Proof. Let v be indexed by Rm and letw be an S-family in the S-linear hull of v indexed

by Rk, then there is a family a such that
∫

Rm av = w. Since w is an S-family and since
v is S-stable, we deduce that a is an S-family. Concluding, applying the S-linearity, for
every b in S ′k, we have∫

Rk

bw =
∫

Rk

b

(∫
Rm

av

)
=
∫

Rm

(∫
Rk

ba

)
v,

and hence the superpositions of w belong to the S-linear hull of v. �

Corollary. Let v be an S-stable family in S ′n. Then the Sspan(v) is the intersection of
all the S -closed subset of S ′n containing v.

Note. For the basic facts about weak duality see [6]. For the basic formulation of
Quantum Mechanics see [7]. For the S-linear algebra formulation of infinite dimensional
Decision Theory and for the study of abstract evolution equations in economical and phys-
ical Theories see [8], [9], [10], [11], [12], [13], [14], [15], [16].
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