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(Nota presentata dal Socio Emerito Maria Teresa Calapso)

ABSTRACT. We give several characterizations of basic concepts of S-linear algebra in
terms of weak duality on topological vector spaces. On the way, some classic results
of Functional Analysis are reinterpreted in terms of S-linear algebra, by an application-
oriented fashion. The results are required in the S-linear algebra formulation of infinite
dimensional Decision Theory and in the study of abstract evolution equations in economi-
cal and physical Theories.

1. Intoduction

The paper contains several and various results. In section 4 we show some relations
among the S-linear hull and the 3(S/,,S,,) closed linear hull of an S-family, ©span is
characterized. In section 5 the fundamental concept of S-linear independence is character-
ized; S-linear independence is the main tool to prove the uniqueness of solution of abstract
Cauchy problems of evolution. In section 6, S-bases are characterized. In section 7 and 8,
S-linear operators are introduced and characterized: they are the core of the infinite dimen-
sional formulation of Decisions Theory and, moreover, of the linear evolution of infinite
dimensional economical and physical systems. In section 9, the new concept of S-closed
set are introduced and studied.

2. Preliminaries and notations on tempered distributions

In this paper we shall use some notations. The letters n, m, k are natural numbers,
N (< k) is the set of positive integer lower than or equal to k; i, is the Lebesgue measure
on R"; I(g c) is the immersion of R in C; if X is a non-empty set, [x is the identity
map on X. If X and Y are two topological vector spaces on K, Hom(X,Y) is the set of
all the linear operators from X to Y, £(X,Y) is the set of all the linear and continuous
operators from X to Y, X* := Hom (X, K) is the algebraic dual of X and X’ = £ (X, K)
is the topological dual of X. S, := S(R",K) is the (n,K)-Schwartz space, that is to
say, the set of all the smooth functions (i.e., of class C*°) of R"™ in K rapidly decreasing at
infinity with all their derivatives (the functions and all its derivatives tend to 0 at Foo faster
than the reciprocal of any polynomial); S(,,) is the standard Schwartz topology on S,,, and
(Sn) is the topological vector space on S,, with its standard topology; the topology S,
is generated by a metric, in fact (S, is closed under differentiation and multiplication by
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polynomials) by the family of seminorms (py) on S,, defined by
pi(f) = sup max {[z"Df(2)]:0 < |al,[5] <k},
rER”™ a,,BGNO

for every non-negative integer k; each py is a norm on S,,, and py, (f) < pr+1 (f) for all
f € S, the pair (Sn, (Pr)g eNo) is a countably complete normed space and consequentely
(Sp) is a Fréchet space (see also [Ho] and [Bal); S, := S'(R™, K) is the space of tempered
distributions from R" to K, that is, the topological dual of the topological vector space
(SnySny)s e, S, =(Sn, Seny)'s if x € R™, 0, is the distribution of Dirac on S,, centered
at x, i.e., the functional 6, : S,, = K: ¢ — ¢ (z);if f € Op(R™,K), where
OM(R",K) = {g € C®(R",K) : ¥ € S(K), 69 € Su(K)},
then the functional

=1, —K:¢— Rnf¢d“"

is a tempered distribution, called the regular distribution generated by f (see [1] page 110,
(2], [3], [4D).
Let a,b € R = R\{0}, S(q.) is the (a,b) -Fourier-Schwartz transformation, i.e., the
operator S(, 3y : Sy, —Sp, defined, for all f € S, and § € R", by
1\" . 1\" _.
San O = (3) [ 10, = (1) 9] (),
a R™ a

where (- | -) is the standard scalar product on R". Moreover, we recall that S, ;) is a
homeomorphism with respect to the standard topology S,y and, concerning its inverse,
for every x € R™ and g € S,,,0one has
- [bla\" ib(z])
San@@) =5 ) [ 967 diin = Sear/(bja). - (9)(2).

Let a,b € R” = R\{0}, F{,;) denotes the (a, b)-Fourier transformation on the space
of tempered distributions, i.e., the operator F(, ) : S, —S,,, defined, for all v € S;, and
for every ¢ € S, by

Flap) () (@) = u (Siap) (),
in other terms it is the transpose of S ):
Flapy = " (Stan) -

Moreover, we recall that 7, ;) is a homeomorphism in the weak* topology o (S}, S,)
(even more it is a topological isomorphism). Moreover, one has

Flap) =(@n/(lbla),—b) T
Two properties that we shall use are the following ones: for all o € N,
Fapy @) = (0i)* (Ipn)® Flap)(w);

and

Flap) (Trn)* u) = (Z) (Flay (),
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where, Iz~ is (as we said) the identity operator on R™, and where (Ig~)“ is the a-th power
of the identity in multi-indexed notation.

3. Preliminaries and notations on S-linear algebra

Let I be a non-empty set. We denote by s (I, S))) the space of all the families in S,
indexed by I, i.e., the set of all the surjective maps from I onto a subset of S;,. Moreover,
as usual, if v is one of these families, for each p € I, the distribution v(p) is denoted by

vp, and the family v itself is also denoted by (vp),,. ;. The set s (1, S,) is a vector space

with respect to the standard operations of addition + : s (I,S/,)* — s (I,S,) defined by
v+w := (vp + wp),c » and multiplication by scalars - : Kx s (I, S;,) — s (I, ;) defined
by v := (Avy),.; - In other words, the family v + w is defined by (v + w),, = vy + wp,
for every p in I, and the family \v is defined by (A\v) = Avyp, for every p in I. In the
theory of superpositions on S, the class of the S-families plays a basic role.

Let v be a family in S), indexed by R™. The family v is called family of class S or
S-family if, for each ¢ € S,,, the function v(¢) : R™ — K, defined by v(¢)(p) := vp(¢),
for each p € R™, belongs to the space S,,. We denote the set of all these families by
S(R™,S8!). Let v € S(R™, S]) be a family of class S. We call operator generated by the
Jamily v (or associated with v) the operator v : S, — Sy, = ¢ — v(9).

In the following we shall denote by £(S,,, Sy,) the set of all the linear and continuous
operators among the two topological vector spaces (Sy,,) and (S,,). Moreover, consider
a linear operator A : S,, — S,;,, we say that A is transposable if its algebraic adjoint
*A: Sk — S (X* denote the algebraic adjoint of X), defined by *A(a) = a o A, maps
S, into S),.

m

Let v € S (R™,S),) be a family of tempered distributions. Then, the following asser-
tions hold and are equivalent:
i) for every a € S/, the composition u = a o U, Le., the functional

u:S, = K: ¢ a(v(e)),

is a tempered distribution;

ii) U is transposable;

iii) Vis (0(Sn, S),), 0(Sm, S,,))-continuous from Sy, t0 Sy,

iv) U is strongly-continuous from (S,) to (Sp).

The two vector spaces S (R™, S),) and L(S,,, Sy, are isomorphic, being the map

() SR™,S) = L(Sn,Sm) :v— T
an isomorphism, moreover, its inverse is the map
() L(Sn,Sm) = SR™,S)) : A A == (6,0 A) o -

Letv € S(R™,S)) and a € S,,. The distribution a o v = '(0)(a) is called the
S-linear superposition of v with respect to (the system of coefficients) a and we denote it

by
/ av.
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Moreover, if u € S), and there exists an a € S,,, such that

U = av,
m

w is said an S-linear superposition of v.

As a particular case, we can consider the linear superposition of v with respect to the
regular distribution generated by the K -constant functional on R™ of value 1, the distri-
bution [1(gm k)|, we denote it simply by [, v, and then

/m V= /m [I(RM}K)] V.

An alternative definition of superposition can be obtained defining the superposition of a
family of numbers (real or complex) with respect to a distributional system of coefficients.

We say that a family of real or complex number x = (x;);crm is a family of class S if
the function f, : R™ — K, defined by f,(i) = x;, for each i in R™, is a function of class
S. We call f, the test function associated with the family x.

In this conditions, we put

ax:=a(f),
Rm

Sor every tempered distribution a € S, , and we call the number me ax superposition of
the family x with respect to a.

Introducing a notation, the relation between the two kind of superpositions is very nat-
ural.

Notation. Let (-, -) be the canonical bilinear form on S}, x S,, and let v be an S-family
of tempered distributions in S, indexed by R™. For every test function ¢ € S,, by the
symbol (v, ¢) we denote the family of numbers defined by

<U7 ¢>1 = <vi7 ¢> )

for every ¢ in R™.

Let v be an S-family of tempered distributions in S), indexed by R™, let a be a tempered
distribution in S),, and let (-, -) be the canonical bilinear form on S), X S,,. Then, for every

¢ € Sy, we have
</ av,¢> = / a{v, o).

We shall see that the preceding result can be restated saying that the canonical bilinear
form on S, x S, is S-linear in the first argument.
The operators

/ (,): S, xS(R™,S) — S (a,v) — av,
m Rm
and

/ (hv):8, =S8, a— av,

RmM
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are called the superposition operator in S,, with coefficients-systems in S!,, and the super-
position operator associated to v.

4. S-linear hull
Definition 4.1 (of S-linear hull). Let v € S (R™, S),). The S-linear hull of v is the set

Sspan (v) == 0 (S),) = {u €S, eSS,  u= / av} . O

Example 4.2 (on the Dirac and Fourier families). Let § be the Dirac family, then
Sspan () = S In fact, for all u € S/, one has

UZUOHSHZUOSZ/ ud.

Let ¢ = ([(1/a)"e~®)]) be the Fourier family, we have Sspan () = Sp, as follows

n’
from the Fourier expansion theorem. A

Definition 4.2 (system of S-generators). Let v € S (R™,S),). The family v is called
system of S-generators for a set V C S/, if and only if Sspan(v) = V. O

Example 4.2. The Dirac family and the Fourier families are systems of S-generators
for S'(R*,C). A

Theorem 4.1 (on the structure of “span). Let u € S (R™,S) . Then, ®span (u) is a
subspace of S, it contains all the elements of u and consequently
span (u) € < span (u) .
Proof. Let A\ € K and v,w € € span (u), then, there exist a, b € S/, such that

v:/ amwz/ bu.

A+ w=A\ au—I—/ buz/ (Aa + b) u,
R"YL m m

and then \v + w € Sspan (u). Moreover, let § be the Dirac basis of S/, we have

Now, one has

dpu = Uup
Rm

and then u, € “span (u). B
Let us see the relation among the S-linear hull of an S-family and its 5(S),, S,,)-closed
linear hull. Note that, since S,, is reflexive, it is semireflexive and then the linear subspaces

of 8!, are 3(S],S,)-closed if and only if they are o(S),, S, )-closed, so the 5(S),,S,)-
closed linear hull of a subset coincides with the o(S),, S,,)-closed hull of the same set.

Theorem 4.2. Let v € S (R™, S]) be a system of S -generators for S.,. Then,

SPally(s;,s,.) (V) = Sp-
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Proof. To prove that v is 5(S),,Sy,)-dense in S, we shall prove that every linear
B(S8),, Sp)-continuous form on S, that is zero on the family v, is zero on the whole S),.
In fact, let f be such a form, since S}, is reflexive there is a test function g in S,, such that
f(u) = u(g), for every distribution v in S},. Since f is zero on v, we have

0= f(vi) = vi(g) = v(g) (i) = v(9)(2),
and hence v(g) is the origin of S,,,. Now, v S-generates S, if and only if ' is surjective
and thus, by the Schwartz-Dieudonné theorem on Frechét spaces (see [5], theorem 7, pg.
92), the operator  is injective, so g is the origin of S,,, and then f is the origin of S”/. H

This result can be generalized.

Theorem 4.3. Let v € S (R™, S))) be an S-family in S),. Then,

Sspan (v) C Spalig(s: s,) (V) = SPaliy(sr s,y (V).
Proof. We shall prove that every superposition of v is the 5(S),, S, )-limit of a sequence

of finite linear combinations of the family v. Let a be in S,,,, then a is the (S}, , S, )-limit

of a sequence d of finite combinations of the Dirac family of S/, since the Dirac family is
B(S},, Sm)-dense in S},,. We have

/ av—/ ( (S :Som hm dk> v = PSnSn) klim drv,
m m k—oo — 00 R™

by the (3(S.,,Sm), 3(S.,,Sy,))-continuity of ‘0. Moreover, by the selection property of
the Dirac’s dlStI‘lbllthIlS, the superposition me d,v is a finite combination of the family v,
and this concludes the proof. B

The following theorem shows when ®span (v) is o(S,, S, )-closed.

Theorem 4.4. Let v € S (R™, S))) be an S-family in S},. Then, the following conditions
are equivalent:

1) ®span (v) is 0(S!,,Sy,)-closed in S!,, i.e., B(S!,, S,)-closed;

2) Sspan (v) = span, (g, s, (V);

3) [gm (-, v) is a topological homomorphism for o(S},,,Sp) and o(S),, Sn);

4) 0 (S,,) is closed in the space (Sy,);

5) ¥ is a topological homomorphism for the pair of topologies (0(Sy,, S),), 0(Sm,Sh,))s

6) v is a topological homomorphism from (Sy,) to (Sp,).

Proof. 1t is the Dieudonné-Schwartz theorem (see [5] , theorem 7, pg. 92) reread in
our context ((S,,) and (S,,) are two Fréchet spaces), taking into account the preceding
theorem. M

Remark. If ¢ bpan( ) is O’(S, Sn)-closed, then [ .. (-, v) is a topological homomor-

n?
phism for 3(S),,,Sm) and B(S,,, S,,) (by proposition 18, page 309, of [Ho]).

Theorem 4.5. Let v € S (R™, S))). Then the following assertions are equivalent
1) v is a system of S-generators for S,,;
2) [gm (-, v) is a surjective topological homomorphism for o(S,,,Sy,) and o(S,,,Sy);
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3) Jam (- v) is a surjective topological homomorphism for 3(S},, Sim) and 3(S},, Sn);
4) v is an injective topological homomorphism for o(S,,, S),) and o (S, S),);
5) U is an injective topological homomorphism from (S,) to (Sp,).

Now we see an infinite-dimensional version of a basic theorem of linear algebra, more
precisely the following classic result:

Theorem. Let v = (v;)!'_, be a family of linear forms on a vector space X and let w
be a linear form vanishing on the kernel of every form v;. Then w is a linear combination
of the family v.

Note, first of all, that the theorem can be restated as follows.

We say kernel of a family v = (v;);¢r of linear forms on a vector space X the intersec-
tion of all the kernels of the forms forming v:

kerv := ﬂ ker v;.
i€l
Moreover, if Y is a subspace of X, by Y- we denote the orthogonal of Y, i.e., the set
of all the linear forms on X which vanish on every vector of Y.

With this notation we can restate the preceding theorem.

Theorem. Let v = (v;)1"_, be a family of linear forms on a vector space X and let w
be another linear form. Then, w vanishes on the kernel of the family v if and only if w is a
linear combination of the family v, in other words

(kerv)" = span(v).

Finally, we state and prove the S-linear version of the above result.
Theorem 4.6. Let v = (v,,) perm be an S-family in S),. Then
NI
(kerv)™ =span, (s, s, (v) -
In particular, if v is exhaustive (i.e., if Sspan (v) is 0(S!,, S,,)-closed) we have

(kerv)" = Sspan (v).

Proof. A classic theorem on duality (see [5] theorem 11, pg. 119) affirms that
(ker A)™ = (Im ("A)) (1 )

for every weakly continuous operator A : F — F. Now applying this theorem to the
operator U we have
~ L T A 7S 7N\ [E—
(kerv)™ = (Im (tv))a(s;L, Sn) (Sspan (’U))a(s;l,sn) = spally(sr .8, (v).
On the other hand, ¢ belongs to ker v if and only if v(¢)(p) = 0, for every m-tuple p, and
this means that ¢ belongs to the kernel of each v,, concluding ker v = ker v. Bl
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5. S-linear independence

Definition 5.1 (of S-linear independence). Let v € S(R™,S])) . The family v is said
S-linearly independent, if a € S, and me av = Os: implies a = 0s; . U

Example 5.1. The Dirac family in S), is S-linearly independent. In fact, one has

/ ud = u,

forall u € S, and then [, ud = Os; implies u = Os; . A

Example 5.2 (the Fourier families). The Fourier families are S-linearly independent.
In fact, let ¢ be the (a, b)-Fourier family, and let [, u¢ = Os/ (c). For every ¢ € S,,(C),
one has

" (/ ““") (0) =u(@(9)) = u (S (9) = Fiar) () (9).
i.e., Fap) (u) = Os; (c), and thus u = Og; (), being F(q p) injective. A

Theorem 5.1. Let v € S (R™,S),) be a family S -linearly independent. Then, v is
linearly independent. Consequently, Sspan (v) is an infinite-dimensional subspace of S,.

Proof. Letk € N, a € (Rm)k ,and v, = (vai)f:1 . By contradiction, let v, be a
linearly dependent system of S’,, then there exists a non-zero k-tuple A € C¥ such that

n’
k
E )\ivai = 057/_&
i=1

Put A = 3% | \;8,,, we have

k k
/ Av = /R > Aiba,v = ;A

m i—1 Rm™

k
5aiv = E /\ﬂ)ai = 057/1.
i=1

Now, since A # 0Os/ , the preceding equality contradicts the S-linear independence of v,
against the assumptions. W

Remark. The above theorem shows that, for the S -families, the S-linear independence
implies the usual linear independence. Actually, the S-linear independence is more re-
strictive than the linear independence, as we shall see later by a simple example. On the
contrary it is less restrictive than the (S, S, )-topological independence, as it is shown
below.

/

We recall that a system v = (v;);¢7 is 3(S!, S,,)-topologically free (resp. o( S’,, Sy )-
topologically free) if and only if there exists a family (f;);er of 3(S],, Sn)-continuous
(resp. o(S;,, Sn)-continuous) linear forms on S;, such that f;(vi) = d;x, Where (d;x) (i, k)e 12
is the Kronecker delta on I x I. If v is not topologically free it is said topologically bound.

Theorem 5.2. Every S-family is 3(S),, Sy)-topologically bound and, thus, o(S),, Sy)
-topologically bound.
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Proof. Let v be an S-family in S, indexed by R™. And let f be an arbitrary family in
S indexed by the same index set. Being the space (S,,) reflexive, for every i, there is a g;
in S, such that f;(u) = u(g), for every u in S},. If there is an index ¢ such that f;(v;) = 1,
then we have

1= fi(vi) = vi(g:) = v(gs) (7) ,

being v an S-family, the function v(g;) is continuous, then there is a neighborhood U of 4
in which the function v(g;) is strictly positive. Then, for every k in U, we have

filor) = vi(g:) = v(g:) (k) >0,

and then f cannot verify the condition of topological independence for v. B

With the same proof, it is possible to prove that every C°-family is strongly topologically
bound. Consequently every smooth family is also strongly topologically bound.

It’s simple to prove that a family v in S/, indexed by R™ is S-linearly dependent if and
only if, for every y in R™, there is a tempered distribution a different from J,, such that

Vp = [om av.

By the Dieudonné-Schwartz theorem (see [5], theorem 7, pg. 92) we immediately de-
duce two characterizations.

Theorem 5.3. Let v € S (R™, S") such that Sspan (v) is 0(S!,, Sy,)-closed. Then the
following assertions are equivalent

1) v is S-linearly independent;

2) ij (~, is an injective topological homomorphism for o (S!,

3) me ) is an injective topological homomorphism for 5(S),

4)Visa sur]ectlve topological homomorphism for o(S,,, S),) an

5) v is an surjective topological homomorphism from (S,,) to

> Sm) and U(S Sn)s
,Sm) and ﬂ( »Sn)s
and 0(Sp,, S,
(Sm)-
Theorem 5.4. Let v € S (R™, S])). Then the following assertions are equivalent
1) v is S-linearly independent and Sspan (v) is o(S!,, S, )-closed;
2) [am (-, v) is an injective topological homomorphism for o(S),,,Sm) and o(S,,,Sy);

3) U is a surjective topological homomorphism for o(S,,,S)) and 0(S;,,S.,);
4) v is an surjective topological homomorphism from (Sy,) to (Sp,).

Remark. If v is S-linearly independent, we can consider the algebraic isomorphism
from S/, to ®span (v) that sends every a € S}, to the superposition [, av, that is the
restriction of the injection [, (-, v) to the pair of sets (S},,® span (v)). We shall denote
the inverse of this isomorphism by [ | v], it is a consequence of the preceding theorem that
this inverse operator is a topological isomorphism, with respect to the topology induced by

o(S!,S,) on Sspan (v) and to (S, S’,), in and only if Sspan (v) is o(S!,, S,,)-closed.

n’
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6. S-bases

Definition 6.1 (of S-basis). Let v € S(R™,S),) and let V C S),. v is an S-basis of V
if it is S-linearly independent, and ®span(v) = V. [

The Dirac family 0 in S/, is an S-basis of S),. We call 0 the canonical S-basis of S, or
the Dirac basis of S),.

Moreover, the following complete version of the Fourier expansion-theorem, allow us
to call the Fourier families of S’(R"™, C) with the name Fourier bases of S’'(R™, C).

Theorem 6.1 (Fourier expansion theorem in geometric form). The Fourier families
in S'(R™,C) are S-bases of S'(R™,C).

The following is a meaningful generalization of the Fourier expansion theorem.

Theorem 6.2 (characterization of an S-basis). Ler v € S (R™,S),). Then,

i) vis S-generates S., if and only if * () is surjective.

ii) v is S-linearly independent if and only if * (0) is injective.

iii) v is an S-basis of S, if and only if * (V) is bijective.

Proof. First of all * () is well defined because v is an S-family. Moreover, it is obvious
that v S-generates S/, if and only if * (D) is surjective, and that v is S -linearly independent
if and only if () is injective. W

Example 6.1 (a system of linearly independent S -generators that is not an S-
basis). Let v = (0.,)er be the family in S of the first derivatives of the Dirac distribu-
tions. The family v is of class S, in fact

() (x) = va () = 0,.(¢) = —¢' (),
and —¢’ is an S-function. Consequently, the operator associated with v is the derivation in
S, up to the sign and, then, * (v) is the derivation in S/,. This last operator is a surjective
operator (every tempered distribution has a primitive) but it is not injective (every tempered
distribution has many primitives), then v is a system of S-generators for S, but it is not
S-linearly independent. Moreover, note that v is linearly independent. In fact, let P be a
finite subset of the real line R, and let, for every py in P, fp, be a function in the space
S1 whose derivative verifies the relation f, (p) = dy,p, for every index p in P (here 6,
is the Kronecker symbol on the index-set P calculate in the pair (pg,p), not the Dirac
distribution). If @ = (a,,)pe p is a finite family of scalars such that 3 .  a,v, = Os;, then

0= Z apVp | (fpo) = Z apOpop = Apy,

peEP peEP

for every pg in P.

By the Dieudonné-Schwartz theorem (see [5], theorem 7, pg. 92) we immediately have
a characterization.

Theorem 6.3. Let v € S (R™, S])). Then the following assertions are equivalent
1) v is an S-basis of S/,

n’
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2) [gm (-, v) is topological isomorphism for o(S},,,Sy) and (S}, Sn);
3) [gm (-, v) is a topological isomorphism for 3(S},,Sp) and 3(S},,Sy);
4) v is a topological isomorphism for o(S,,,S),) and 0(S,,,S}.);

5) U is a topological isomorphism from ( S,,) to (Sy,)-

7. S-operators and the definition of S-linear operators

Definition 7.1 (image of a family of distributions). Let W C S/, A: W — S/, be an

m
operator and v = (vp) _ px be a family of tempered distributions in W, i.e., such that the

pe
set {vp}pew is contained in W. The image of v under A is by definition the family in
Sy

A@) = (Alvy)), e
i.e., the family such that, for all p € R¥, one has A(v), = A(v,). O

We can read the above definition saying that “the image of a family of vectors is the
family of the images of vectors”.

Definition 7.2 (operator of class S). Let W C S/, and L : W — S, be an operator. L
is an S-operator or operator of class S if, for each natural k and for eachv € S(R* S!),
such that {vp} g © W, one has L(v) € S(R* 8. O

We can read the above definition as follows: “L is of class S if the image of an S-family
is an S-family”.

Example 7.1 (the transpose). Let A : S, — S, be a (o (Sp,S),),0(Sm,S),))-
continuous operator. A is transposable (i.e., for every a € S),, a o A is in §)) and its
transpose is

tA.S! — 8/ taraoA

m

Letv € S (R¥,S)), one has, by definition,
LA (v), = "A(vy),
and hence one deduces

"A@)(9) (p) = "A(v), (8) = "A(vp) (¢) = vp (A(¢)) = v (A(9)) (p),

so, taking into account that v is an S-family, one has ‘A (v) (¢) = v (A (¢)) € S. Con-
cluding one has 'A (v) € S(R*,S)) , and thus the operator ‘A, sending S-family in
S-family, is an S-operator. A

Application 7.1. Let L : S;, — S, be a differential operator with constant coefficients
and v be an S-family in S/,. Then L(v) is an S-family, in fact L is the transpose of a certain

differential opeator on S,,. For instance, the family (6. ) g~ is obviously an S-family, and

so the families of derivatives (63@) “ are S -families for every multi-index i. &
TzER™
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Definition 7.3 (S-linear operator). Let L : S, — S!. be an S-operator. L is called
S-linear operator if, for each natural k, for each v € S(R* S!) and for every a € Sj,

one has . (/Rk av) _ /Rk aL(v).

The set of all the S-linear operators from S!, to S' is denoted by *Hom(S!,, S!

m

). O

8. Characterization of the S-linear operators

Now, we can show the nature of the S-linear operators defined on SJ,.

Recall thatif v € s (R*, S ) and w € S (R™, S,), the family in S/,

/ W = (/ va> ;
m m peRk

is called the superposition of w with respect to v. We have already proved that, if v €
S (Rk, S,’n) then [,,, vw € S (Rk,S;L) and

A
vw| =0ow.
m

In this case, me vw is also denoted by vw and it is called the S-product of v by w.

Lemma 8.1 (the image under a transpose operator). Let B € L(S,,,S,,) and v €

S(R* 8! ). Then,
'B(v) :/ vBY,
Rk

so in particular, ' B is an S-operator.
Proof. For each p € R*, one has

</R B) - /RB =vp0(BY) = v0B="'B(v) = "B)(p),

and hence
/ vBY = 'B(v). &
]Rk

Theorem 8.1 (S-linearity of a transpose operator). Let B € L(S,,,Sp,) and v €
S(R¥,S! ). Then, for each a € S|, one has

m
‘B </ av) :/ a'B(v).
Rk Rk
Proof. One has

tB(/chw> = (/chw>oB:(aoa)oB:ao(ﬁoB):
= /Rka(ﬁoB)V:/Rka(/Rkav):/RkatB(v).I



TOPOLOGICAL CHARACTERIZATIONS OF S-LINEARITY 13

Application 8.1. As a simple application, we prove the formula: v’ = [, ud’, where ¢’
is the S-family in S; defined by §' = (51’0)1]6R. Let § be the Dirac family of S7, then for

each u € 87, one has u = [, ud, and thus

u’zD(/ﬂ@u&)z/}RuD(é):/Rué’. o

Theorem 8.2 (characterization of S- linearity). Let L : S, — S|

m*

S-linear if and only if there exists a B € L (S,,, Sy) suchthat L = *(B).

Then, L is

Proof. Sufficiency. Follows from the above theorem.
Necessity. Let ¢ be the Dirac’s family in S),, one has

L(u)L(/nw?) :/nuL(é): (L)) (u),

L="(L(©)").

SO

Q. E.D. R

Recalling that a linear operator L : S/, — S/ is said to be transposable with respect
to the canonical bilinear form (-, -) if and only if there exists a B € L (S, S,,) such that
L = *(B), and recalling that L is weakly continuous if and only if it is strongly continuous
and if and only if it is transposable, we derive the following definitive characterization.

Theorem 8.3 (characterization of S-linearity). Ler L : S], — S,
Then, the following assertions are equivalent

1) L is S-linear

2) there exists a B € L (S, Sy) such that L = ' (B);

3) L is linear and weakly continuous;

4) L is linear and strongly continuous,

5) L is linear and transposable.

be a operator.

9. S-closed subsets

A natural kind of stability arises with S-linear combinations.

Definition 9.1 (of S-closedness in S),). Let W be a subset of S!,. W is called S- closed
or S-stable in S|, if it contains all the superpositions of its S-families. In other words, W
is S-closed if, for each k € N, for each v € S (R™,S]) in W and for each a € S,
Jgm av € W. O

Example 9.1. The empty set and S;, are S-closed. A

Theorem 9.1. Let F be a family of S-closed subset of S),. Then (| F' is S-closed.
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Proof. Let F' = (F});.; and let v be an S-family in () . Then, v is an S-family in F;
for every ¢ € I (in fact, v is a family in (| F if v, € F;, forevery p € R™ and i € I).
Since F; is S-closed

/ av € F;,

for every a € S}, and every i € I, therefore [, av € (\F. W

Remark (on the union of two S-closed sets). The union of two S-closed sets is not
necessarily S -closed; neither in the case in which the two S-closed subsets are subspaces.
In fact, consider in S} the S-linear hulls F; = Sspan (J(,,0)) and F> = Sspan (6 y)).
and their union F' = F; U F5. F' is obviously not a subspace, but it is star-shaped in the
origin; in fact, if w is in F', then w lies in F7 or in F5, and then the segment joining u and
the origin is containing in F'. Now, a star-shaped S-closed set is necessarily a subspace
(see later), then F' cannot be S -closed.

Open problem. If two S-closed sets are disjoints, then is their union S-closed ? And,
if v is an S-family in the union of two disjoint S-closed sets, must v be contained in one
and only one of the two component sets ? The question arises naturally, since the image of
v is a path-connected subset of S}, in the topology o (S,,, Sy,).

Theorem 9.2. Let v be an S -family in S,, and let F' be the collection of all the S-closed
subsets of S!, containing v. Then Sspan(v) C () F. Consequently, span(v) is S-closed
if and only if

Sspan(v) = ﬂF
Proof. Since F; is S-closed and contains v, we have Sspan(v) C F;, forevery i € I,

and consequently Sspan(v) C (] F. If Sspan(v) is S-closed, since it contains v , we have
Sspan(v) € F, and hence

ﬂF C Sspan(v). B
Remark. Note that, in the conditions of the preceding theorem, in general it is not

true that () F' is a subspace, however, if Sspan(v) is S-closed then () F' is necessarily a
subspace.

Theorem 9.3. Let F' be a 3(S],, S,,)-closed subspace of S),. Then F is S-closed.
Proof. Let § be the Dirac family in S, and let v be an S-family in F, then

dpv = v, € F.
R?n

Now, let a € S, since Sy, is reflexive, we know that
—_— /
Spally(s: s, (0)=S8,,,

therefore there exists a sequence A = (Ay), o in span (&) converging to @ in the topology

B(Spms Sm).-
We have, by the selection property of the Dirac family,

/ Ayv € span (v) C F,
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the set-inclusion holding since F is a subspace of S,,. Moreover, being the superposition-
operator [p,, (-, v) continuous with respect to the topologies 3(S},, Sm) and 5(S;,, S,,), it
follows that, for every a in S/,

/ (w:/ (B(S':"’S’") lim Ak>v: B(S5:5n)  lim Agpv.
m m k—+4o00 k—+oo Jpm

The last limit belongs to F' for 5(S],, Sy)-closedness. And consequently, F' is S-closed.
|

Remark. Since S, is semireflexive F'is a o(S),, S, )-closed if and only if it is 3(S),, Sy)-
closed.

Definition 9.2 (of S-homomorphism). We say that an operator A : S, — S/, is an
S-homomorphism if, for every positive integer k and for every family a = (a;);epr in S),,,
the image of a under A, i.e., the family A(a) := (A(a;))scrr, is an S-family if and only if
a is an S-family.

Definition 9.3 (of S-stable family). We say that an S-family v in S, indexed by R™
is S-stable if, for every family a = (a;);crr in S.,, the superposition me av (that is
necessarily a family in the S-linear hull of v and indexed by R¥) is an S -family if and
only if a is an S -family. In other terms v is S-stable if and only if the superposition
operator [, (-, v) is an S-homomorphism.

Theorem 9.4. Let v be an S -stable family in S!,. Then the ®span(v) is S-closed.

Proof. Let v be indexed by R™ and let w be an S-family in the S-linear hull of v indexed
by R”, then there is a family a such that me av = w. Since w is an S-family and since
v is S-stable, we deduce that @ is an S-family. Concluding, applying the S-linearity, for
every bin Sy, we have

Joro= forCfer) = Lo (o)

and hence the superpositions of w belong to the S-linear hull of v. B

Corollary. Let v be an S-stable family in S),. Then the Sspan(v) is the intersection of
all the S -closed subset of S!, containing v.

Note. For the basic facts about weak duality see [6]. For the basic formulation of
Quantum Mechanics see [7]. For the S-linear algebra formulation of infinite dimensional
Decision Theory and for the study of abstract evolution equations in economical and phys-
ical Theories see [8], [9], [10], [11], [12], [13], [14], [15], [16].
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